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Abstract

Heavy-tailed distributions are often used to enhance the robustness of regression
and classification methods to outliers in output space. Often, however, we are con-
fronted with “outliers” in input space, which are isolated observations in sparsely
populated regions. We show that heavy-tailed stochastic processes (which we con-
struct from Gaussian processes via a copula), can be used to improve robustness
of regression and classification estimators to such outliers by selectively shrinking
them more strongly in sparse regions than in dense regions. We carry out a theo-
retical analysis to show that selective shrinkage occurs when the marginals of the
heavy-tailed process have sufficiently heavy tails. The analysis is complemented
by experiments on biological data which indicate significant improvements of es-
timates in sparse regions while producing competitive results in dense regions.

1 Introduction

Gaussian process classifiers (GPCs) [12] provide a Bayesian approach to nonparametric classifica-
tion with the key advantage of producing predictive class probabilities. Unfortunately, when training
data are unevenly sampled in input space, GPCs tend to overfit in the sparsely populated regions.
Our work is motivated by an application to protein folding where this presents a major difficulty.
In particular, while Nature provides samples of protein configurations near the global minima of
free energy functions, protein-folding algorithms, which imitate Nature by minimizing an estimated
energy function, necessarily explore regions far from the minimum. If the estimate of free energy is
poor in those sparsely-sampled regions then the algorithm has a poor guide towards the minimum.
More generally this problem can be viewed as one of “covariate shift,” where the sampling pattern
differs in the training and testing phase.

In this paper we investigate a GPC-based approach that addresses overfitting by shrinking predictive
class probabilities towards conservative values. For an unevenly sampled input space it is natural
to consider a selective shrinkage strategy: we wish to shrink probability estimates more strongly in
sparse regions than in dense regions. To this end several approaches could be considered. If sparse
regions can be readily identified, selective shrinkage could be induced by tailoring the Gaussian
process (GP) kernel to reflect that information. In the absence of such knowledge, Goldberg and
Williams [5] showed that Gaussian process regression (GPR) can be augmented with a GP on the
log noise level. More recent work has focused on partitioning input space into discrete regions
and defining different kernel functions on each. Treed Gaussian process regression [6] and Treed
Gaussian process classification [1] represent advanced variations of this theme that define a prior
distribution over partitions and their respective kernel hyperparameters. Another line of research
which could be adapted to this problem posits that the covariate space is a nonlinear deformation
of another space on which a Gaussian process prior is placed [3, 13]. Instead of directly modifying
the kernel matrix, the observed non-uniformity of measurements is interpreted as being caused by
the spatial deformation. A difficulty with all these approaches is that posterior inference is based on
MCMC, which can be overly slow for the large-scale problems that we aim to address.
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This paper shows that selective shrinkage can be more elegantly introduced by replacing the Gaus-
sian process underlying GPC with a stochastic process that has heavy-tailed marginals (e.g., Laplace,
hyperbolic secant, or Student-t). While heavy-tailed marginals are generally viewed as providing ro-
bustness to outliers in the output space (i.e., the response space), selective shrinkage can be viewed
as a form of robustness to outliers in the input space (i.e., the covariate space). Indeed, selective
shrinkage means the data points that are far from other data points in the input space are regularized
more strongly. We provide a theoretical analysis and empirical results to show that inference based
on stochastic processes with heavy-tailed marginals yields precisely this kind of shrinkage.

The paper is structured as follows: Section 2 provides background on GPCs and highlights how
selective shrinkage can arise. We present a construction of heavy-tailed processes in Section 3 and
show that inference reduces to standard computations in a Gaussian process. An analysis of our
approach is presented in Section 4 and details on inference algorithms are presented in Section 5.
Experiments on biological data in Section 6 demonstrate that heavy-tailed process classification
substantially outperforms GPC in sparse regions while performing competitively in dense regions.
The paper concludes with an overview of related research and final remarks in Sections 7 and 8.

2 Gaussian process classification and shrinkage

A Gaussian process (GP) [12] is a prior on functions z : X → R defined through a mean function
(usually identically zero) and a symmetric positive semidefinite kernel k(·, ·). For a finite set of
locations X = (x1, . . . , xn) we write z(X) ∼ p(z(X)) = N (0,K(X,X)) as a random variable
distributed according to the GP with finite-dimensional kernel matrix [K(X,X)]i,j = k(xi, xj). Let
y denote an n-vector of binary class labels associated with measurement locationsX1. For Gaussian
process classification (GPC) [12] the probability that a test point x∗ is labeled as class y∗ = 1, given
training data (X, y), is computed as

p(y∗ = 1|X, y, x∗) = Ep(z(x∗)|X,y,x∗)
(

1

1 + exp{−z(x∗)}

)
(1)

p(z(x∗)|X, y, x∗) =

∫
p(z(x∗)|X, z(X), x∗)p(z(X)|X, y)dz(X).

The predictive distribution p(z(x∗)|X, y, x∗) represents a regression on z(x∗) with a complicated
observation model y|z. The central observation from Eq. (1) is that we could selectively shrink
the prediction p(y∗ = 1|X, y, x∗) towards a conservative value 1/2 by selectively shrinking
p(z(x∗)|X, y, x∗) closer to a point mass at zero.

3 Heavy-tailed process priors via the Gaussian copula

In this section we construct the heavy-tailed stochastic process by transforming a GP. As with the
GP, we will treat the new process as a prior on functions. Suppose that diag (K(X,X)) = σ21. We
define the heavy-tailed process f(X) with marginal c.d.f. Gb as

z(X) ∼ N (0,K(X,X)) (2)
u(X) = Φ0,σ2(z(X)) (3)

f(X) = G−1b (u(X)) = G−1b (Φ0,σ2(z(X))).

Here the function Φ0,σ2(·) is the c.d.f. of a centered Gaussian with variance σ2. Presently, we
only consider the case when Gb is the (continuous) c.d.f. of a heavy-tailed density gb with scale
parameter b that is symmetric about the origin. Examples include the Laplace, hyperbolic secant
and Student-t distribution. We note that other authors have considered asymmetric or even discrete
distributions [2, 11, 16] while Snelson et al. [15] use arbitrary monotonic transformations in place
of G−1b (Φ0,σ2(·)). The process u(X) has the density of a Gaussian copula [10, 16] and is critical
in transferring the correlation structure encoded by K(X,X) from z(X) to f(X). If we define

1To improve the clarity of exposition, we only deal with binary classification for now. A full multiclass
classification model is used in our experiments.
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z(f(X)) = Φ−10,σ2(Gb(f(X))), it is well known [7, 9, 11, 15, 16] that the density of f(X) satisfies

p(f(X)) =

∏
i=1 gb(f(xi))

|K(X,X)/σ2|1/2
exp

{
−1

2
z(f(X))>

[
K(X,X)−1 − I

σ2

]
z(f(X))

}
. (4)

Observe that if K(X,X) = σ2I then p(f(X)) =
∏
i=1 gb(f(xi)). Also note that if Gb were

chosen to be Gaussian, we would recover the Gaussian process. The predictive distribution
p(f(x∗)|X, f(X), x∗) can be interpreted as a Heavy-tailed process regression (HPR). It is easy to
see that its computation can be reduced to standard computations in a Gaussian model by nonlinearly
transforming observations f(X) into z-space. The predictive distribution in z-space satisfies

p(z(x∗)|X, f(X), x∗) = N (µ∗,Σ∗) (5)

µ∗ = K(x∗, X)K(X,X)−1z(f(X)) (6)

Σ∗ = K(x∗, x∗)−K(x∗, X)K(X,X)−1K(X,x∗). (7)
The corresponding distribution in f -space follows by another change of variables. Having defined
the heavy-tailed stochastic process in general we now turn to an analysis of its shrinkage properties.

4 Selective shrinkage

By “selective shrinkage” we mean that the degree of shrinkage applied to a collection of estimators
varies across estimators. As motivated in Section 2, we are specifically interested in selectively
shrinking posterior distributions near isolated observations more strongly than in dense regions.
This section shows that we can achieve this by changing the form of prior marginals (heavy-tailed
instead of Gaussian) and that this induces stronger selective shrinkage than any GPR could induce.
Since HPR uses a GP in its construction, which can induce some selective shrinkage on its own, care
must be taken to investigate only the additional benefits the transformation G−1b (Φ0,σ2(·)) has on
shrinkage. For this reason we assume a particular GP prior which leads to a special type of shrinkage
in GPR and then check how an HPR model built on top of that GP changes the observed behavior.

In this section we provide an idealized analysis that allows us to compare the selective shrinkage
obtained by GPR and HPR. Note that we focus on regression in this section so that we can obtain
analytical results. We work with n measurement locations, X = (x1, . . . , xn), whose index set
{1, . . . , n} can be partitioned into a “dense” set D with |D| = n−1 and a single “sparse” index s /∈
D. Assume that xd = xd′ ,∀d, d′ ∈ D, so that we may let (without loss of generality) K̃(xd, xd′) =

1,∀d 6= d′ ∈ D. We also assert that xd 6= xs ∀d ∈ D and let K̃(xd, xs) = K̃(xs, xd) = 0 ∀d ∈ D.
Assuming that n > 2 we fix the remaining entry K̃(xs, xs) = ε/(ε + n − 2), for some ε > 0. We
interpret ε as a noise variance and let K = K̃ + εI .

Denote any distributions computed under the GPR model by pgp(·) and those computed in HPR
by php(·). Using K(X,X) = K, define z(X) as in Eq. (2). Let y denote a vector of real-valued
measurements for a regression task. The posterior distribution of z(xi) given y, with xi ∈ X , is
derived by standard Gaussian computations as

pgp(z(xi)|X, y) = N
(
µi, σ

2
i

)
µi = K̃(xi, X)K(X,X)−1y

σ2
i = K(xi, xi)− K̃(xi, X)K(X,X)−1K̃(X,xi).

For our choice of K(X,X) one can show that σ2
d = σ2

s for d ∈ D. To ensure that the posterior
distributions agree at the two locations we require µd = µs, which holds if measurements y satisfy

y ∈ Ygp ,
{
y|
(
K̃(xd, X)− K̃(xs, X)

)
K(X,X)−1y = 0

}
=

{
y

∣∣∣∣∣∑
d∈D

yd = ys

}
.

A similar analysis can be carried out for the induced HPR model. By Eqs. (5)–(7) HPR inference
leads to identical distributions php(z(xd)|X, y′) = php(z(xs)|X, y′) with d ∈ D if measurements
y′ in f -space satisfy

y′ ∈ Yhp ,
{
y′|
(
K̃(xd, X)− K̃(xs, X)

)
K(X,X)−1Φ−10,σ2(Gb(y

′)) = 0
}

=
{
y′ = G−1b (Φ0,σ2(y))|y ∈ Ygp

}
.
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Figure 1: Illustration of G−1b (Φ0,σ2(x)), for σ2 = 1.0 with Gb the c.d.f. of (a) the Laplace dis-
tribution (b) the hyperbolic secant distribution (c) a Student-t inspired distribution, all with scale
parameter b. Each plot shows three samples—dotted, dashed, solid—for growing b. As b increases
the distributions become heavy-tailed and the gradient of G−1b (Φ0,σ2(x)) increases.

To compare the shrinkage properties of GPR and HPR we analyze select pairs of measurements
in Ygp and Yhp. The derivation requires that G−1b (Φ0,σ2(·)) is strongly concave on (−∞, 0],
strongly convex on [0,+∞) and has gradient > 1 on R. To see intuitively why this should hold,
note that for Gb with fatter tails than a Gaussian, |G−1b (Φ0,σ2(x))| should eventually dominate
|Φ−10,b2(Φ0,σ2(x))| = (b/σ)|x|. Figure 1 demonstrates graphically that the assumption holds for sev-
eral choices of Gb, provided b is large enough, i.e., that gb has sufficiently heavy tails. Indeed, it can
be shown that for scale parameters b > 0, the first and second derivatives of G−1b (Φ0,σ2(·)) scale
linearly with b. Consider a measurement 0 6= y ∈ Ygp with sign (yd) = sign (yd′) ,∀d, d′ ∈ D.
Analyzing such y is relevant, as we are most interested in comparing how multiple reinforcing ob-
servations at clustered locations and a single isolated observation are absorbed during inference. By
definition of Ygp, for d∗ = argmaxd∈D|yd| we have |yd∗ | < |ys| as long as n > 2. The correspond-
ing element y′ = G−1b (Φ0,σ2(y)) ∈ Yhp then satisfies

|y′s| =
∣∣G−1b (Φ0,σ2(ys))

∣∣ > ∣∣∣∣∣G−1b (Φ0,σ2(yd∗))

yd∗
ys

∣∣∣∣∣ =

∣∣∣∣y′d∗yd∗ ys
∣∣∣∣ . (8)

Thus HPR inference leads to identical predictive distributions in f -space at the two locations even
though the isolated observation y′s has disproportionately larger magnitude than y′d∗ , relative to the
GPR measurements ys and yd∗ . As this statement holds for any y ∈ Ygp satisfying our earlier sign
requirement, it indicates that HPR systematically shrinks isolated observations more strongly than
GPR. Since the second derivative of G−1b (Φ0,σ2(·)) scales linearly with scale b > 0, an intuitive
connection suggests itself when looking at inequality (8): the heavier the marginal tails, the stronger
the inequality and thus the stronger the selective shrinkage effect.

The previous derivation exemplifies in an idealized setting that HPR leads to improved shrinkage of
predictive distributions near isolated observations. More generally, because GPR transforms mea-
surements only linearly, while HPR additionally pre-transforms measurements nonlinearly, our anal-
ysis suggests that for any GPR we can find an HPR model which leads to stronger selective shrink-
age. The result has intuitive parallels to the parametric case: just as `1-regularization improves
shrinkage of parametric estimators, heavy-tailed processes improve shrinkage of nonparametric es-
timators. We note that although our analysis kept K(X,X) fixed for GPR and HPR, in practice we
are free to tune the kernel to yield a desired scale of predictive distributions. The above analysis
has been carried out for regression, but motivates us to now explore heavy-tailed processes in the
classification case.

5 Heavy-tailed process classification

The derivation of heavy-tailed process classification (HPC) is similar to that of standard multiclass
GPC with Laplace approximation in Rasmussen and Williams [12]. However, due to the nonlinear
transformations involved, some nice properties of their derivation are lost. We revert notation and
let y denote a vector of class labels. For a C-class classification problem with n training points we
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introduce a vector of nC latent function measurements (f11 , . . . , f
1
n, f

2
1 , . . . , f

2
n, . . . , f

C
1 , . . . , f

C
n )>.

For each block c ∈ {1, . . . , C} of n variables we define an independent heavy-tailed process prior
using Eq. (4) with kernel matrix Kc. Equivalently, we can define the prior jointly on f by letting
K be a block-diagonal kernel matrix with blocks K1, . . . ,KC . Each kernel matrix Kc is defined
by a (possibly different) symmetric positive semidefinite kernel with its own set of parameters. The
following construction relaxes the earlier condition that diag (K) = σ21 and instead views Φ0,σ2(·)
as some nonlinear transformation with parameter σ2. By this relaxation we effectively adopt Liu et
al.’s [9] interpretation that Eq. (4) defines the copula. The scale parameters b could in principle vary
across the nC variables, but we keep them constant at least within each block of n. Labels y are
represented in a 1-of-n form and generated by the following observation model

p(yci = 1|fi) = πci =
exp{f ci }∑
c′ exp{f c′i }

. (9)

For inference we are ultimately interested in computing

p(yc∗ = 1|X, y, x∗) = Ep(f∗|X,y,x∗)
(

exp{f c∗}∑
c′ exp{f c′∗ }

)
, (10)

where f∗ = (f1∗ , . . . , f
C
∗ )>. The previous section motivates that improved selective shrinkage will

occur in p(f∗|X, y, x∗), provided the prior marginals have sufficiently heavy tails.

5.1 Inference

As in GPC, most of the intractability lies in computing the predictive distribution p(f∗|X, y, x∗). We
use the Laplace approximation to address this issue: a Gaussian approximation to p(z|X, y) is found
and then combined with the Gaussian p(z∗|X, z, x∗) to give us an approximation to p(z∗|X, y, x∗).
This is then transformed to a (typically non-Gaussian) distribution in f -space using a change of
variables. Hence we first seek to find a mode and corresponding Hessian matrix of the log posterior
log p(z|X, y). Recalling the relation f = G−1b (Φ0,σ2(z)), the log posterior can be written as

J(z) , log p(y|z) + log p(z) = y>f −
∑
i

log
∑
c

exp {f ci )} − 1

2
z>K−1z − 1

2
log |K|+ const.

Let Π be an nC × n matrix of stacked diagonal matrices diag (πc) for n-subvectors πc of π. With
W = diag (π)−ΠΠ>, the gradients are

∇J(z) = diag

(
df

dz

)
(y − π)−K−1z

∇2J(z) = diag

(
d2f

dz2

)
diag (y − π)− diag

(
df

dz

)
Wdiag

(
df

dz

)
−K−1.

Unlike in Rasmussen and Williams [12],−∇2J(z) is not generally positive definite owing to its first
term. For that reason we cannot use a Newton step to find the mode and instead resort to a simpler
gradient method. Once the mode ẑ has been found we approximate the posterior as

p(z|X, y) ≈ q(z|X, y) = N
(
ẑ,−∇2J(ẑ)−1

)
,

and use this to approximate the predictive distribution by

q(z∗|X, y, x∗) =

∫
p(z∗|X, z, x∗)q(z|X, y)df.

Since we arranged for both distributions in the integral to be Gaussian, the resulting Gaussian can
be straightforwardly evaluated. Finally, to approximate the one-dimensional integral with respect
to p(f∗|X, y, x∗) in Eq. (10) we could either use a quadrature method, or generate samples from
q(z∗|X, y, x∗), convert them to f -space using G−1b (Φ0,σ2(·)) and then approximate the expectation
by an average. We have compared predictions of the latter method with those of a Gibbs sampler;
the Laplace approximation matched Gibbs results well, while being much faster to compute.
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Figure 2: (a) Schematic of a protein segment. The backbone is the sequence of C ′, N,Cα, C ′, N
atoms. An amino-acid-specific sidechain extends from the Cα atom at one of three discrete an-
gles known as “rotamers.” (b) Ramachandran plot of 400 (Φ,Ψ) measurements and corresponding
rotamers (by shapes/colors) for amino-acid arginine (arg). The dark shading indicates the sparse
region we considered in producing results in Figure 3. Progressively lighter shadings indicate how
the sparse region was grown to produce Figure 4.

5.2 Parameter estimation

Using a derivation similar to that in [12], we have for f̂ = G−1b (Φ0,σ2(ẑ)) that the Laplace approx-
imation of the marginal log likelihood is

log p(y|x) ≈ log q(y|x) = J(ẑ)− 1

2
log | − 2π∇2J(ẑ)| (11)

= y>f̂ −
∑
i

log
∑
c

exp
{
f̂ ci

}
− 1

2
ẑ>K−1ẑ − 1

2
log |K| − 1

2
log | − ∇2J(ẑ)|+ const.

We optimize kernel parameters θ by taking gradient steps on log q(y|x). The derivative needs to
take into account that perturbing the parameters can also perturb the mode ẑ found for the Laplace
approximation. At an optimum∇J(ẑ) must be zero, so that

ẑ = Kdiag

(
df̂

dẑ

)
(y − π̂), (12)

where π̂ is defined as in Eq. (9) but using f̂ rather than f . Taking derivatives of this equation allows
us to compute the gradient dẑ/dθ. Differentiating the marginal likelihood we have

d log q(y|x)

dθ
= (y − π̂)>diag

(
df̂

dẑ

)
dẑ

dθ
− dẑ

dθ
K−1ẑ +

1

2
ẑ>K−1

dK

dθ
K−1ẑ −

1

2
tr

(
K−1

dK

dθ

)
− 1

2
tr

(
∇2J(ẑ)−1

d∇2J(ẑ)

dθ

)
.

The remaining gradient computations are straightforward, albeit tedious. In addition to optimizing
the kernel parameters, it may also be of interest to optimize the scale parameter b of marginals Gb.
Again, differentiating Eq. (12) with respect to b allows us to compute dẑ/db. We note that when
perturbing b we change f̂ by changing the underlying mode ẑ as well as by changing the parameter
b which is used to compute f̂ from ẑ. Suppressing the detailed computations, the derivative of the
marginal log likelihood with respect to b is

d log q(y|x)

db
= (y − π̂)>

df̂

db
− dẑ

db

>
K−1ẑ − 1

2
tr

(
∇2J(ẑ)−1

d∇2J(ẑ)

db

)
.
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Figure 3: Rotamer prediction rates in percent in (a) sparse and (b) dense regions. Both flavors
of HPC (hyperbolic secant and Laplace marginals) significantly outperform GPC in sparse regions
while performing competitively in dense regions.

6 Experiments

To a first approximation, the three-dimensional structure of a folded protein is defined by pairs
of continuous backbone angles (Φ,Ψ), one pair for each amino-acid, as well as discrete angles,
so-called rotamers, that define the conformations of the amino-acid sidechains that extend from
the backbone. The geometry is outlined in Figure 2(a). There is a strong dependence between
backbone angles (Φ,Ψ) and rotamer values; this is illustrated in the “Ramachandran plot” shown
in Figure 2(b), which plots the backbone angles for each rotamer (indicated by the shapes/colors).
The dependence is exploited in computational approaches to protein structure prediction, where
estimates of rotamer probabilities given backbone angles are used as one term in an energy function
that models native protein states as minima of the energy. Poor estimates of rotamer probabilities
in sparse regions can derail the prediction procedure. Indeed, sparsity has been a serious problem
in state-of-the-art rotamer models based on kernel density estimates (Roland Dunbrack, personal
communication). Unfortunately, we have found that GPC is not immune to the sparsity problem.
To evaluate our algorithm we consider rotamer-prediction tasks on the 17 amino-acids (out of 20)
that have three rotamers at the first dihedral angle along the sidechain2. Our previous work thus
applies with the number of classes C = 3 and the covariates being (Φ,Ψ) angle pairs. Since the
input space is a torus we defined GPC and HPC using the following von Mises-inspired kernel for
d-dimensional angular data:

k(xi, xj) = σ2 exp

{
λ

((
d∑
k=1

cos(xi,k − xj,k)

)
− d

)}
,

where xi,k, xj,k ∈ [0, 2π] and σ2, λ ≥ 03. To find good GPC kernel parameters we optimize
an `2-regularized version of the Laplace approximation to the log marginal likelihood reported in
Eq. 3.44 of [12]. For HPC we let Gb be either the centered Laplace distribution or the hyperbolic
secant distribution with scale parameter b. We estimate HPC kernel parameters as well as b by
similarly maximizing an `2-regularized form of Eq. (11). In both cases we restricted the algorithms
to training sets of only 100 datapoints. Since good regularization parameters for the objectives are
not known a priori we train with and test them on a grid for each of the 17 rotameric residues in
ten-fold cross-validation. To find good regularization parameters for a particular residue we look up
that combination which, averaged over the ten folds of the remaining 16 residues, produced the best
test results. Having chosen the regularization constants we report average test results computed in
ten-fold cross validation.

We evaluate the algorithms on predefined sparse and dense regions in the Ramachandran plot, as
indicated by the background shading in Figure 2(b). Across 17 residues the sparse regions usually
contained more than 70 measurements (and often more than 150), each of which appears in one
of the 10 cross validations. Figure 3 compares the label prediction rates on the dense and sparse

2Residues alanine and glycine are non-discrete while proline has two rotamers at the first dihedral angle.
3The function cos(xi,k − xj,k) = [cos(xi.k), sin(xi,k)][cos(xj.k), sin(xj,k)]

> is a symmetric positive
semi-definite kernel. By Propositions 3.22 (i) and (ii) and Proposition 3.25 in Shawe-Taylor and Cristian-
ini [14], so is k(xi, xj) above.
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Figure 4: Average rotamer prediction rate in the sparse region for two flavors of HPC, standard GPC
well as CTGP [1] as a function of the average number of points per residue in the sparse region.

regions. Averaged over all 17 residues HPC outperforms GPC by 5.79% with Laplace and 7.89%
with hyperbolic secant marginals. With Laplace marginals HPC underperforms GPC on only two
residues in sparse regions: by 8.22% on glutamine (gln), and by 2.53% on histidine (his). On
dense regions HPC lies within 0.5% on 16 residues and only degrades once by 3.64% on his.
Using hyperbolic secant marginals HPC often improves GPC by more than 10% on sparse regions
and degrades by more than 5% only on cysteine (cys) and his. On dense regions HPC usually
performs within 1.5% of GPC. In Figure 4 we show how the average rotamer prediction rate across
17 residues changes for HPC, GPC, as well as CTGP [1] as we grow the sparse region to include
more measurements from dense regions. The growth of the sparse region is indicated by progres-
sively lighter shadings in Figure 2(b). As more points are included the significant advantage of HPC
lessens. Eventually GPC does marginally better than HPC and much better than CTGP. The values
reported in Figure 3 correspond to the dark shaded region, with an average of 155 measurements.

7 Related research

Copulas [10] allow convenient modelling of multivariate correlation structures as separate from
marginal distributions. Early work by Song [16] used the Gaussian copula to generate complex
multivariate distributions by complementing a simple copula form with marginal distributions of
choice. Popularity of the Gaussian copula in the financial literature is generally credited to Li [8]
who used it to model correlation structure for pairs of random variables with known marginals. More
recently, the Gaussian process has been modified in a similar way to ours by Snelson et al. [15].
They demonstrate that posterior distributions can better approximate the true noise distribution if
the transformation defining the warped process is learned. Jaimungal and Ng [7] have extended
this work to model multiple parallel time series with marginally non-Gaussian stochastic processes.
Their work uses a “binding copula” to combine several subordinate copulas into a joint model.
Bayesian approaches focusing on estimation of the Gaussian copula covariance matrix for a given
dataset are given in [4, 11]. Research also focused on estimation in high-dimensional settings [9].

8 Conclusions

This paper analyzed learning scenarios where outliers are observed in the input space, rather than
the output space as commonly discussed in the literature. We illustrated heavy-tailed processes as
a straightforward extension of GPs and an economical way to improve the robustness of estimators
in sparse regions beyond those of GP-based methods. Importantly, because these processes are
based on a GP, they inherit many of its favorable computational properties; predictive inference
in regression, for instance, is straightforward. Moreover, because heavy-tailed processes have a
parsimonious representation, they can be used as building blocks in more complicated models where
currently GPs are used. In this way the benefits of heavy-tailed processes extend to any GP-based
model that struggles with covariate shift.
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